When using pandas drop duplicates, we may encountered rows that still have duplicating by checking via
df.column_name.value_counts()
Not sure why Pandas drop duplicates performance showing inconsistent result. However, to remove duplicate row, produce 100% unique based on index or key column, you can use this
df_unique = df_unique.drop(df_unique[df_unique["key_column_name"].duplicated()].index)
df_unique.temp_id.value_counts()