Here are a simple custom metric to measure accuracy, which you can attach it into Trainer parameter
from transformers import Trainer
from evaluate import load
metric = load('accuracy')
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
accuracy = metric.compute(predictions=preds, references=labels)
return {'accuracy': accuracy}
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['validation'],
data_collator=data_collator,
compute_metrics=compute_metrics, <----- HERE
tokenizer=tokenizer
)
trainer.train()